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INTRODUCTION

This project is to develop a robust computer aided diagnosis (CAD) system for mass detection
with high sensitivity and specificity in digitized mammograms. As listed in the Statement of
Work, the research scope in the fourth year of project is to evaluate the clinical significance of
CAD system and finish the final documentation and manuscript reports. This study is to be taken

by testing how well the CAD algorithm performs in early detection of masses with a consecutive
set of mammograms.

BODY

Objective 1: to generate a database containing 100 consecutive cases for evaluation of clinical
significance of CAD system.

Accomplishments:

1. Data Collection Criteria and Procedure

In order to test the clinical significance of CAD system in terms of early detection, a serial data
set of mammograms was collected, in which each case contains a minimum of 2 consecutive
mammograms with masses. The criteria for inclusion in this study were as follows:
1. Mass must be visible on mammogram
2. Mass must be proven by biopsy to be malignant
3. Mass must be seen in retrospect on a prior mammogram when reviewed by a radiologist
Procedure used for case selection consists of
1. Lists of patients from both the screening and diagnostic centers were obtained
2. Each patient’s chart was reviewed to select for masses that were visible
mammographically, all others were excluded

3. The selected cases were reviewed for malignant pathology outcome, all others were
excluded

4. Films were requested from the diagnostic center for those cases with malignant masses

Films from the screening center had to be obtained manually due to lack of manpower

6. Films were reviewed to ascertain whether the exam and prior mammograms were
available. Only those with prior mammograms were selected.

7. Selected mammograms were reviewed by a radiologist to determine a) if the mass was
visible retrospectively on the prior exam and b) the reason it was not detected on the prior
exam

8. The radiologist indicated the location and outlined the contour of the lesion on both
exams and the BIRADS descriptors

9. Ground truth files (hard copy) were generated based on the radiologists outlines

10. The films were then digitized manually on a Kodak (LUMISYS) LS85 digitizer at a
resolution of 50pm and 12 bits in grey scale.
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2. Sources and number of cases reviewed: (as of March 23, 2004)

Query of patient databases 770
Staging database 93

Teaching files archive 148
Breast conference patients 100
Log of invasive procedures 160




Research archives 63
Total number of cases reviewed 1,334

3. Reasons for exclusion of cases from the original 1,334 patients reviewed:

Duplication of names among lists

Lesion was something other than a mass

Lesion was a benign mass

No pathology available

No information available for this patient/exam

No follow up for this patient

Films were unavailable or incomplete

Mass was not visible on prior mammogram (interval cancer)

a. Analysis of the 770 names from patient database queries:

Reason Number excluded
Duplication of names among lists 49

Lesion was something other than amass 337

Lesion was a benign mass 111

No information available 51

No follow up available 56

This leaves a balance of 166 potential cases, of which:
Films were unavailable or incomplete 100

Mass not visible on prior exam 16
Miscellaneous exclusions 21

Usable cases 29

b. Analysis of the 93 names from the staging database:
Reason Number excluded
Duplication of names among lists 1

Lesion was something other than a mass 39

No information available 9

This leaves a balance of 44 potential cases, of which:
Films were unavailable or incomplete 42

Usable cases 2

c. Analysis of the 148 names from teaching files:

Reason Number excluded
Duplication of names among lists 20

Lesion was something other than a mass 58

Lesion was a benign mass 12

No information available 13

No pathology available 1

This leaves a balance of 44 potential cases, of which:
Films were unavailable or incomplete 32

Mass not visible on prior exam 5




Usable cases 7

d. Analysis of the 100 names from breast conference lists:

Reason Number excluded
Duplication of names among lists 8
Lesion was something other than a mass 34
Lesion was a benign mass 1
No information available 12

This leaves a balance of 45 potential cases, of which:

Films were unavailable or incomplete 29

Mass not visible on prior exam 4

Usable cases 12

e. Analysis of the 160 names from invasive procedures log:
Reason Number excluded
Duplication of names among lists 4

Lesion was something other than a mass 71

Lesion was a benign mass 4

No information available 20

This leaves a balance of 61 potential cases, of which:

Films were unavailable or incomplete 34
Mass not visible on prior exam 5
Usable cases 22

[ Analysis of the 63 names from research archives:
Reason Number excluded
Duplication of names among lists 2
Lesion was something other than a mass 22
Lesion was a benign mass 5

No pathology available 9
This leaves a balance of 25 potential cases, of which:
Mass not visible on prior exam 11
Usable cases 14

Summary: As of the end of March 2004, a total of 86 out of 1334 cases were collected as
consecutive cancer cases for study. Since then, there are another 6 cases have been collected, but
the electronic truth files need to be generated. It is anticipated that we can achieve the goal of
100 cases by the end of May 2004.

4. Characteristic analysis of the database
The characteristics of database was analyzed by following descriptions: (a) Case distribution
in terms of exam numbers, (b) Case distribution in terms of mass shape, (c) Case distribution in

terms of mass margin, (d) Case distribution in terms of Mass density. The histograms are shown
in Figure 1.
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Figure 1. Case distribution in terms of (a) exam numbers, (b) mass shape, (c) mass margin,
(d) Mass density.

Objective 2: evaluation of clinical significance of CAD system in terms of early detection

Due to the unexpected difficulty and the huge working load in serial data collection, the
evaluation of clinical significance of CAD system could not be finished at this time. We are
requesting a no-cost extension of this grant. The results of this part will be reported in the final
report next year.

KEY RESEARCH ACCOMPLISHMENTS

1. A database of mammogram was generated containing 83 cases of serial mammograms,
which were selected by reviewing more than 1334 cases.

2. An analysis of collected database was taken in terms of consecutive exam number, mass
shape, mass margin, and mass density.

REPORTABLE OUTCOMES
1. Presentation and/or proceedings paper

(® Y. Quu, L. Li, D. Goldgof, R.A. Clark, “Three dimensional deformation model for lesion
correspondence in breast imaging,” Proceedings of SPIE Medical Imaging, 2003.




2. Fundings Applied

(a) "Computer Aided Diagnosis of Focal Asymmetric Density", a project in Program Grant
titled “Breast Imaging and Computerized Analysis Program” submitted to NCI, 2003.

CONCLUSIONS

This project is to develop a robust computer aided diagnosis (CAD) system for mass detection
with high sensitivity and specificity in digitized mammograms. The research in fourth year is on
data collection, evaluation of clinical significance of CAD system, and the final documentation
and manuscript reports. By reviewing more than 1334 cases, a total of 83 serial cancer cases
were collected. A ground truth file was generated by an experienced radiologist. This work is
continuing and more cases will be collected to achieve the goal of 100 cases before the end of
May 2004. However, due to the difficulty and the huge working load in database generation, the
testing of clinical significance of CAD system could not be finished in this year. We are
requesting a no-cost extension of this grant. The results of this part will be reported in the final
report next year.
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ABSTRACT

Predicting breast tissue deformation is of great significance in several medical applications such as biopsy, diagnosis, and
surgery. In breast surgery, surgeons are often concerned with a specific portion of the breast, e.g., tumor, which must be
located accurately beforehand. Also clinically it is important for combining the information provided by images from
several modalities or at different times, for the detection/diagnosis, treatment planning and guidance of interventions.
Multi-modality imaging of the breast obtained by X-ray mammography, MRI is thought to be best achieved through some
form of data fusion technique. However, images taken by these various techniques are often obtained under entirely
different tissue configurations, compression, orientation or body position. In these cases some form of spatial

transformation of image data from one geometry to another is required such that the tissues are represented in an equivalent
configuration.

We propose to use a 3D finite element model for lesion correspondence in breast imaging. The novelty of the approach lies
in the following facts: (1) Finite element is the most accurate technique for modeling deformable objects such as breast.
The physical soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast
modeling that is essential for lesion correspondence. (2) When both MR and mammographic images are available, a
subject-specific 3D breast model will be built from MRIs. If only mammography is available, a generic breast model will
be used for two-view mammography reading. (3) Incremental contact simulation of breast compression allows accurate
capture of breast deformation and ensures the quality of lesion correspondence. (4) Balance between efficiency and
accuracy is achieved through adaptive meshing. We have done intensive research based on phantom and patient data.

Keywords: Finite Element Method, Mammogram, MRI, Lesion correspondence

1. INTRODUCTION

Breast cancer is the second leading cause of cancer death for all women (after lung cancer), and the leading overall cause of
cancer death in women between the ages of 40 and 59. In 2002, 257,800 new cases of breast cancer will be diagnosed, and
39,600 women will die from the disease. The risk of developing breast cancer seems to depend on several factors including
age, personal or family history of breast cancer, parity, age at first birth, hormonal replacement, etc. However, over 70% of
cancer cases are women with no identifiable risk factors. Early diagnosis is very important for proper treatment and cure
and this has led many countries, including US, to develop regular screening programs that are primarily based on
mammography and physical examination {1, 2].

Mammography is the main screening tool for breast cancer with a sensitivity of about 85% and specificity up to 25%.
Despite their proven effectiveness, both screening tools entail significant variability and there are few attempts to-date to
standardize either one or correlate mammographic to physical examination findings. Techniques that improve the accuracy
of mammography or physical breast examination or both are still highly desirable and could benefit breast cancer diagnose.
Furthermore, methodologies that yield a 3D representation of the breast with accurate volume and lesion location are




expected to offer a unique tool for accurate and consistent follow-up, for correlation between findings from different
screening procedures, as well as correlation of serial examinations (annual or serial exams).

Screening mammograms usually consist of a craniocaudal (CC) and mediolateral oblique (ML) view of each breast.
Breast x-rays show areas of fatty and glandular tissue, pectoral muscle (if the view is ML), skin boundary, nipple and the
non-breast region. Due to variation in compression and physical changes of the breast, consecutive mammograms of the
same patient are difficult to fully correlate from one examination to the next and the expert reader may identify only general
similarities. Similarly, due to differences in compression geometry and lack of common, reference points or fixed
landmarks other than the nipple, one-to-one correspondence between the mammographic views is nearly impossible, and
well-known stereo imaging algorithms widely used in stereo navigation, such as stereovision or passive ranging, cannot be
applied to mammography.

We propose to construct solid model for human breast, and design solid model-based methods to estimate non-rigid
registration and non-rigid motion attributes, that is, to predict physical deformation and displacements of the breast and
perform a non-rigid registration between two different X-ray views. This is useful for surgical procedures and diagnoses
purposes. A 3D finite element model of the breast was constructed based on the MR slice images. With FEM model, a
compression similar to one performed during mammography data acquisition, was simulated and a registration between the
projected image of 3D volume and X-ray images was performed.

Two types of model have been used in two-view mammography: statistical and geometrical. In statistical model-based
approach, a classifier can be trained through similarity analysis among feature pairs identified in two views and then be
used to help single-view detection. This approach has the drawbacks that only limited geometrical information of features
can be utilized, which affects its accuracy and reliability. Geometrical model has also been used to facilitate two-view
feature registration and 3D reconstruction of calcification [3,4,5]. The disadvantage of geometrical model is that many
assumptions must be made to idealize breast deformation. The assumptions may be invalid for breasts that had large non

rigid deformation during X-ray imaging. 3D finite element model is proposed to be used for two-view mammography
interpretation [6, 7, 8, 9].

2. FINITE ELEMENT MODEL

Finite element method is a technique for modeling deformable objects such as breast [10, 11, 12, 13, 14]. The physical
soundness and mathematical rigor of finite element method ensure the accuracy and reliability of breast modeling that is
essential for two-view mammography reading. When both MR and mammographic images are available, a subject-specific
3D breast model can be built from MRI. If only mammography is available, a generic breast model can be used for two-
view mammography reading.

The breast deformation can be described by:

0*u

g 1)

where u is displacement, F is force, t is time, 0 is mass, and (G, A ) are Lamé constants. After finite element discretization,
we obtain a transient matrix equation:

A+G)WV(V-u)+GVu+F=p

Mii +Cii + Ku = F(f) @)

where M is mass matrix, C is damping matrix, K is stiffness matrix that is composed of material properties, and F(t) is force.
In static case, it becomes Ku = F, which will be used in breast deformation modeling.

The FEM is discretized using unstructured tetrahedral element because of its computational efficiency and flexibility in
handling complex shapes. 10-node tetrahedral element is used to increase modeling accuracy for large breast deformation.
The dynamics of the elastic body is governed by the following system of partial differential equations:
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where: (u,v,w) — 3D displacement vector, f; - force field, and £, A are Lame constants, computed from Young’s
modulus and Poisson’s ratio.

3. ALGORITHM
The objectives of our project are to develop new procedures using 3D deformation model to fulfill following tasks:

o Increase the accuracy in the registration and correlation of the mammographic views.

e  Provide accurate localization of findings from mammography or physical examination procedures that could be used
for biopsy procedures or follow-up.

e  Register MR data sets of the phantom imaged with different amounts of compression.

The main idea of the proposed algorithm is to utilize FEM model of breast constructed from breast MR images to model
breast compression during mammographic imaging. Consider a feature point identified in one X-ray view. The location of
that point is projected into 3D space and into compressed 3D breast model. The model is uncompressed and the projected
line is deformed into a curve. Consider now a feature point in the second X-ray view. Similar projection and decompression
of the model is performed and another curve is constructed. If the above two points are views of the same 3D feature point,
then those two curves will intersect and that intersection will reconstruct 3D feature point position. If they do not intersect,

two points found in each view do not correspond to the same 3D feature point. Fig. 1. illustrates this algorithm. Below we
describe two versions of this algorithm.

Lesion is visible in 2 views: correspondence recovery

One feature identified in one view (CC) and its location projected into compressed model as a line
e  Model is uncompressed and 3D curve S is constructed
N features are identified in second view (ML) and all locations are projected into a differently compressed model as
line
Model is uncompressed and N curves are constructed
Distances between above N curves and curve S are computed
Minimum distance identifies corresponding features
Intersection of corresponding 3D curves provides for reconstructed 3D position of this feature.

All above steps are repeated for all features identified in the first view (CC), all correspondences are identified and all
3D positions are reconstructed.

Nodes(z,y,z), .. Nodes(£y,2), -

N
x,y,z},

[Compression ML 3’%3‘!"\\\“3« Nogdes{zy,2); -

Fig. 1. Correspondence recovery




Lesion is visible in one view: second reading scenario

One feature identified in one view (CC) and its location projected into compressed model as a line

Model is uncompressed and 3D curve is constructed

Model is compressed for a different view (say ML) and 3D curve is further deformed

3D curve is projected into second view (ML), 2D curve is constructed

The position of the 2D curve indicates where corresponding 2D feature can be located, that area can be marked for the

radiologist for second reading. The thickness of the 2D curve is determined by the resolution of the 3D model and the
size of feature in the first view (CC). Fig. 2. illustrates this algorithm.
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Fig. 2. Second reading

4. MODEL CONSTRUCTION

4.1 Image Acquisition and Data Extraction

MR volume of phantom is used for model construction and corresponding mammograms are selected for compression
simulation experiments. The distance between MR slices is 2.5mm and the voxel size for the T1 MRI is
1.41x1.41x2.50mm. For phantom data experiments we use Triple Modality Biopsy Phantom containing simulated cystic
masses and dense masses. Phantom and breast mammograms are scanned at a resolution of 75 micron and 12 bits per pixel.

For each MRI slice, the breast is segmented from background and a 2D breast contour is extracted using standard
morphological operators. B-spline smoothing is used to remove small sharp edges that might be generated during
segmentation [15,16,17]. The 3D breast shape model is constructed by combining all the 2D breast contours.

4.2 Meshing

Voxel- and surface-oriented meshing methods have been used to generate the meshed FEM model. The phantom volume
was then meshed into isoparametric tetrahedral structural solids (elements). The elements consist of four corner nodes and
an additional node in the middle of each edge. Each node has three associated degrees of freedom (DOF) which define
translation into the nodal x-, y- and z-directions. Each element has a quadratic displacement behavior, and provides
nonlinear material properties as well as consistent tangent stiffness for large strain applications. The skin was modeled by

adding shell elements consisting of eight nodes onto the surface of the fatty tissue. Fig. shows renderings of the FEM
models.




The mesh is composed of tetrahedral elements with 10 nodes (each side has an additional node in the middle to model
the deformations more accurately) using ANSYS [15, 17, 18, 23, 24, 25, 26]. The elements have a quadratic displacement
behavior. The resulting meshed volume is presented in Figure 4. This is the finite element of the phantom to ‘which the
deformations will be applied. For a 10 pixels sample interval in the original image slice, 52 slices were stacked to construct

the volume and an element size of 8 units. The meshing procedure resulted in 13225 nodes and 8744 elements (see Table.
2).

|

(b) FEM model

(a)Digital image of phantom 7 ‘.
Fig. 3. Finite Element Model for The Phantom

Table 1. Number of Nodes and Elements

Element size Number of nodes Number of elements
20 2836 1668
15 4010 2424
10 7899 5068
8 13225 8744
5 52982 36824

4.3 Material Models

To ensure accuracy of breast deformation modeling, appropriate assumptions about material properties of breast tissue
must be made. Considering the large deformation caused by compression in X-ray imaging, exponential and polynomial
functions are used to account for nonlinear behavior of breast. These functions have been used in many studies on
biomechanical modeling of breast [4, 5, 6, 7, 8, 19, 20, 21, 22].

Young’s modulus is one of the elastic constants needed to characterize the elastic behavior of a material. Published
values of the Young’s modulus of component tissue of the breast vary by up to an order of magnitude, presumably due to
the method of measurement or estimation. Model calibration is applied in our study to obtain a more accurate value for
Poisson’s ratio and a smaller error in final registration.

Model calibration is used to train the parameters of the model such that the computed finite element model will have a
minimum error comparing with some ground truth. In our case the training parameters are material properties, the model is
the breast solid model and the ground truth is the CC X-ray view. In order to calibrate the model, a compression similar to
X-ray CC (Cranio-Caudal) view is applied to the breast model and the predicted node displacements are computed. By

computing the final registration error the value for Poisson’s ratio is updated recursively. After model calibration, Poisson’s
ratio is set to 0.490.

4.4 Boundary Conditions and Contact Simulation

During X-ray imaging, force is applied through two plates that move towards each other to compress the breast. This is a
dynamic contact problem that must be simulated numerically. We approximate breast deformation during compression by
incremental stepwise simulation. The underlying assumption is that the motion of plate is slow enough so that breast
deformation in each step can be described by a static equilibrium equation. More importantly, the mesh topology will not




be too distorted to affect the displacement prediction. In clinical practice, the final compression magnitude is recorded, but
the force exerted on plates is rarely measured. So, we specify Dirichlet condition (displacement) on plates. To avoid sliding
movement between plates and breast, we assume that once in contact with plates, the node will move only in the direction
of compression. We also assign zero displacement to the nodes that lie on the ribs (chest wall).

5. RESULTS AND CONCLUSIONS

X-ray mammograms and MRIs of the breast phantom were used to evaluate the performance of the Finite Element model
and the described algorithm. We computed model prediction error as compared to feature size and distance of image
features, as illustrated in Table 2.

In experiments of compression simulation using FEM deformation model when suspicious area is visible in 2 views, the
smallest distance between curves for 9 feature points we tested is 0.6mm. Ideally the smallest distance between the curves
in the uncompressed model should be zero. Compared with the distance between feature points, 25.9mm to 80mm, this
result showed that the Finite Element Model can predict lesion correspondence. Validation was also performed using MRI
data. The computed lesion coordinates were compared with coordinates calculated from MRI volume set. Distance
between a feature point and its prediction is 2.6mm based on 9 feature points in the phantom.

To validate the algorithm for cases when suspicious area is visible only in one view, a feature points visible in both
views were selected. First the predicted position is computed (the deformed projected curve), then the minimum Euclidean
distance between the real feature position and its prediction is calculated as an indicator for accuracy. The average error is
2.1mm. The average error for MRI volume with simulated compression agreed to within 1.4mm =+ 0.3.

Table 2. Algorithm performance on phantom data

Simulated Mass and Calcification Average Error (mm) Average Feature Average Feature Distance
Diameter (mm) (mm)
3D curve distance 0.6+0.4 10~20 25.9 ~80.0
Predicted 3D lesion position 2.6:0.8 10 ~20 25.9~80.0
Predicted 2D lesion position 2.1£0.4 10 ~20 25.9~80.0
Predicted lesion position in MRI 1.4+0.3 10 ~20 25.9 ~80.0
volume '

In conclusion, our initial experiments have shown that we can construct sufficiently detailed 3D FEM model to establish
correspondences of features identified in two mammographic views and MRI volume. The proposed algorithm needs to be

further tested and validated on larger data set. Further optimization of element sizes and meshing strategies are needed for
improved accuracy.




6. Appendix

(a) Phantom MRI Slice 20 (b) Phantom MRI Slice 30 (c) Phantom MRI Slice 37

Fig. 4. 52 Phantom MRI Slices for Model Construction

(2) Phantom CC View X-ray Image (b) Phantom Model CC View after Compression Simulation
Fig. 5. Comparison of Phantom X-ray Image and Simulation Result
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